Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 8(4)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081042

RESUMO

The impact of metals bioaccumulation in marine organisms is a subject of intense investigation. This study was designed to determine the association between oxidative stress induced by seawater enriched with trace metals and protein synthesis using as a model the mussels Mytilus galloprovincialis. Mussels were exposed to 40 µg/L Cu, 30 µg/L Hg, or 100 µg/L Cd for 5 and 15 days, and the pollution effect was evaluated by measuring established oxidative biomarkers. The results showed damage on the protein synthesis machine integrity and specifically on translation factors and ribosomal proteins expression and modifications. The exposure of mussels to all metals caused oxidative damage that was milder in the cases of Cu and Hg and more pronounced for Cd. However, after prolonged exposure of mussels to Cd (15 days), the effects receded. These changes that perturb protein biosynthesis can serve as a great tool for elucidating the mechanisms of toxicity and could be integrated in biomonitoring programs.

2.
Antibiotics (Basel) ; 8(1)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699905

RESUMO

Over the last years, we have been focused on chloramphenicol conjugates that combine in their structure chloramphenicol base with natural polyamines, spermine, spermidine and putrescine, and their modifications. Conjugate 3, with spermidine (SPD) as a natural polyamine linked to chloramphenicol base, showed the best antibacterial and anticancer properties. Using 3 as a prototype, we here explored the influence of the antibacterial and anticancer activity of additional benzyl groups on N1 amino moiety together with modifications of the alkyl length of the aminobutyl fragment of SPD. Our data demonstrate that the novel modifications did not further improve the antibacterial activity of the prototype. However, one of the novel conjugates (4) showed anticancer activity without affecting bacterial growth, thus emerging as a promising anticancer agent, with no adverse effects on bacterial microflora when taken orally.

3.
Aquat Toxicol ; 192: 136-147, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28957715

RESUMO

Numerous studies have shown the ability of trace metals to accumulate in marine organisms and cause oxidative stress that leads to perturbations in many important intracellular processes, including protein synthesis. This study is mainly focused on the exploration of structural changes, like base modifications, scissions, and conformational changes, caused in 18S and 5S ribosomal RNA (rRNA) isolated from the mussel Mytilus galloprovincialis exposed to 40µg/L Cu, 30µg/L Hg, or 100µg/L Cd, for 5 or 15days. 18S rRNA and 5S rRNA are components of the small and large ribosomal subunit, respectively, found in complex with ribosomal proteins, translation factors and other auxiliary components (metal ions, toxins etc). 18S rRNA plays crucial roles in all stages of protein synthesis, while 5S rRNA serves as a master signal transducer between several functional regions of 28S rRNA. Therefore, structural changes in these ribosomal constituents could affect the basic functions of ribosomes and hence the normal metabolism of cells. Especially, 18S rRNA along with ribosomal proteins forms the decoding centre that ensures the correct codon-anticodon pairing. As exemplified by ELISA, primer extension analysis and DMS footprinting analysis, each metal caused oxidative damage to rRNA, depending on the nature of metal ion and the duration of exposure. Interestingly, exposure of mussels to Cu or Hg caused structural alterations in 5S rRNA, localized in paired regions and within loops A, B, C, and E, leading to a continuous progressive loss of the 5S RNA structural integrity. In contrast, structural impairments of 5S rRNA in mussels exposed to Cd were accumulating for the initial 5days, and then progressively decreased to almost the normal level by day 15, probably due to the parallel elevation of metallothionein content that depletes the pools of free Cd. Regions of interest in 18S rRNA, such as the decoding centre, sites implicated in the binding of tRNAs (A- and P-sites) or translation factors, and areas related to translation fidelity, were found to undergo significant metal-induced conformational alterations, leading either to loosening of their structure or to more compact folding. These modifications were associated with parallel alterations in the translation process at multiple levels, a fact suggesting that structural perturbations in ribosomes, caused by metals, pose significant hurdles in translational efficiency and fidelity.


Assuntos
Estruturas Animais/metabolismo , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Estresse Oxidativo , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 5S/metabolismo , Oligoelementos/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Estruturas Animais/efeitos dos fármacos , Animais , Sequência de Bases , Biomarcadores/metabolismo , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Conformação de Ácido Nucleico , Estresse Oxidativo/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/química , RNA Ribossômico 5S/genética , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Antibiotics (Basel) ; 5(2)2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27271676

RESUMO

Chloramphenicol (CAM) is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM.

5.
PLoS One ; 10(8): e0134526, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267355

RESUMO

As fight against antibiotic resistance must be strengthened, improving old drugs that have fallen in reduced clinical use because of toxic side effects and/or frequently reported resistance, like chloramphenicol (CAM), is of special interest. Chloramphenicol (CAM), a prototypical wide-spectrum antibiotic has been shown to obstruct protein synthesis via binding to the bacterial ribosome. In this study we sought to identify features intensifying the bacteriostatic action of CAM. Accordingly, we synthesized a series of CAM-dimers with various linker lengths and functionalities and compared their efficiency in inhibiting peptide-bond formation in an Escherichia coli cell-free system. Several CAM-dimers exhibited higher activity, when compared to CAM. The most potent of them, compound 5, containing two CAM bases conjugated via a dicarboxyl aromatic linker of six successive carbon-bonds, was found to simultaneously bind both the ribosomal catalytic center and the exit-tunnel, thus revealing a second, kinetically cryptic binding site for CAM. Compared to CAM, compound 5 exhibited comparable antibacterial activity against MRSA or wild-type strains of Staphylococcus aureus, Enterococcus faecium and E. coli, but intriguingly superior activity against some CAM-resistant E. coli and Pseudomonas aeruginosa strains. Furthermore, it was almost twice as active in inhibiting the growth of T-leukemic cells, without affecting the viability of normal human lymphocytes. The observed effects were rationalized by footprinting tests, crosslinking analysis, and MD-simulations.


Assuntos
Anti-Infecciosos/química , Cloranfenicol/química , Dimerização , Resistência Microbiana a Medicamentos/genética , Anti-Infecciosos/uso terapêutico , Sistema Livre de Células/efeitos dos fármacos , Cloranfenicol/uso terapêutico , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Linfócitos/efeitos dos fármacos , Simulação de Dinâmica Molecular , Biossíntese de Proteínas/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Ribossomos/genética , Staphylococcus aureus/efeitos dos fármacos
6.
Bioorg Med Chem ; 23(13): 3163-74, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26001343

RESUMO

A series of chloramphenicol (CAM) amides with polyamines (PAs), suitable for structure-activity relationship studies, were synthesized either by direct attachment of the PA chain on the 2-aminopropane-1,3-diol backbone of CAM, previously oxidized selectively at its primary hydroxyl group, or from chloramphenicol base (CLB) through acylation with succinic or phthalic anhydride and finally coupling with a PA. Conjugates 4 and 5, in which the CLB moiety was attached on N4 and N1 positions, respectively, of the N(8),N(8)-dibenzylated spermidine through the succinate linker, were the most potent antibacterial agents. Both conjugates were internalized into Escherichia coli cells by using the spermidine-preferential uptake system and caused decrease in protein and polyamine content of the cells. Noteworthy, conjugate 4 displayed comparable activity to CAM in MRSA or wild-type strains of Staphylococcus aureus and Escherichia coli, but superior activity in E. coli strains possessing ribosomal mutations or expressing the CAM acetyltransferase (cat) gene. Lead compounds, and in particular conjugate 4, have been therefore discovered during the course of the present work with clinical potential.


Assuntos
Acetiltransferases/antagonistas & inibidores , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Cloranfenicol/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Espermidina/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Anidridos Ftálicos/química , Anidridos Succínicos/química
7.
J Endourol ; 29(5): 580-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25441059

RESUMO

BACKGROUND AND PURPOSE: The urothelium represents "the tightest and most impermeable barrier in the body." We investigated the distribution of paclitaxel (PTX) in the ureteral wall after the inflation of a paclitaxel-eluting balloon (PEB) in an attempt to elucidate the possibility of clinical application of PEBs in the ureter. MATERIALS AND METHODS: Nine domestic pigs were used. Nine PEBs and nine conventional percutaneous angioplasty balloons (CB) were inflated in the right and left ureter of each animal, respectively. The ureter treated by CB was the control for the contralateral ureter. Specimens were removed: Immediately after inflation (group A), after 12 hours (group B), and after 24 hours (group C). Two samples were obtained from each ureter of groups A, B and C. One sample was investigated by nuclear magnetic resonance spectroscopy (NMR), the other by histology and immunohistochemistry (IHC) using a specific for PTX polyclonal antibody. RESULTS: Reduced inflammation was observed in the group B and C samples in comparison with their controls. PTX was distributed mostly in the urothelium and submucosal layer in group A (IHC). The agent was present in the urothelial, submucosal, and muscle layer in groups B and C. The concentration of PTX (NMR) has been reduced in group C compared with the tissue extracts of group B. CONCLUSION: The distribution of PTX includes the urothelial, submucosal, and smooth muscle layers. Inflammation was reduced in the case of drug-eluting balloons.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Sistemas de Liberação de Medicamentos , Paclitaxel/farmacocinética , Ureter/metabolismo , Urotélio/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Dilatação/instrumentação , Feminino , Imuno-Histoquímica , Espectroscopia de Ressonância Magnética , Paclitaxel/administração & dosagem , Sus scrofa , Suínos , Ureter/patologia , Obstrução Ureteral/cirurgia
8.
Nucleic Acids Res ; 42(13): 8621-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24939899

RESUMO

Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine-CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N(8),N(8)-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3'-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3'-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Cloranfenicol/farmacologia , Poliaminas/química , Inibidores da Síntese de Proteínas/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Cloranfenicol/química , Cloranfenicol/toxicidade , Escherichia coli/efeitos dos fármacos , Humanos , Inibidores da Síntese de Proteínas/farmacologia , Inibidores da Síntese de Proteínas/toxicidade , Ribossomos/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-24874079

RESUMO

Polyamines, in particular spermidine and spermine, have been identified as important antioxidants, highly induced by oxidative stress in a variety of organisms. However, little is known about changes in polyamine content of metal-stressed marine organisms. In the present study, mussels (Mytilus galloprovincialis) were experimentally exposed to 25 µg/L Cd(2+) or 100 µg/L Cd(2+) for up to 15 days. Cd(2+) was progressively accumulated in mussel tissues, leading to a characteristic oxidative-stress status. Free putrescine (PUT) production was noticeably induced in response to Cd(2+) at day 5 and then declined. In contrast, free spermidine (SPD) content was gradually reduced, whereas the concentration of free spermine (SPM) increased. In combination, these changes led to a 69% or 88% reduction in the ratio of (SPD+SPM)/PUT at day 5, dependent on the Cd(2+) concentration used, which subsequently followed an upward trend in values, albeit not reaching those of controls. Conjugated polyamines constantly increased, in particular conjugated spermidine and spermine, tagging along with metallothionein production. Acetylated polyamines showed a diverse profile of changes, but their content was generally kept at low levels throughout the exposure period. Collectively, our results suggest that certain polyamine compounds could play a significant role in the tolerance of mussels against Cd(2+)-mediated stress, and that the ratio (SPD+SPM)/PUT could be a good indicator of the metal-stress status.


Assuntos
Bivalves/metabolismo , Cádmio/toxicidade , Sistema Digestório/metabolismo , Mytilus/metabolismo , Poliaminas/metabolismo , Animais , Bivalves/efeitos dos fármacos , Sistema Digestório/efeitos dos fármacos , Metalotioneína/metabolismo , Mytilus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo
10.
Antimicrob Agents Chemother ; 58(1): 472-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24189263

RESUMO

Ketolides, the third generation of expanded-spectrum macrolides, have in the last years become a successful weapon in the endless war against macrolide-resistant pathogens. Ketolides are semisynthetic derivatives of the naturally produced macrolide erythromycin, displaying not only improved activity against some erythromycin-resistant strains but also increased bactericidal activity as well as inhibitory effects at lower drug concentrations. In this study, we present a series of novel ketolides carrying alkyl-aryl side chains at the C-6 position of the lactone ring and, additionally, one or two fluorine atoms attached either directly to the lactone ring at the C-2 position or indirectly via the C-13 position. According to our genetic and biochemical studies, these novel ketolides occupy the known macrolide binding site at the entrance of the ribosomal tunnel and exhibit lower MIC values against wild-type or mutant strains than erythromycin. In most cases, the ketolides display activities comparable to or better than the clinically used ketolide telithromycin. Chemical protection experiments using Escherichia coli ribosomes bearing U2609C or U754A mutations in 23S rRNA suggest that the alkyl-aryl side chain establishes an interaction with the U2609-A752 base pair, analogous to that observed with telithromycin but unlike the interactions formed by cethromycin. These findings reemphasize the versatility of the alkyl-aryl side chains with respect to species specificity, which will be important for future design of improved antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Cetolídeos/farmacologia , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico 23S/genética , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo
11.
Biochimie ; 95(9): 1765-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23770443

RESUMO

The ribosomal exit tunnel had recently become the centre of many functional and structural studies. Accumulated evidence indicates that the tunnel is not simply a passive conduit for the nascent chain, but a rather functionally important compartment where nascent peptide sequences can interact with the ribosome to signal translation to slow down or even stop. To explore further this interaction, we have synthesized short peptides attached to the amino group of a chloramphenicol (CAM) base, such that when bound to the ribosome these compounds mimic a nascent peptidyl-tRNA chain bound to the A-site of the peptidyltransferase center (PTC). Here we show that these CAM-peptides interact with the PTC of the ribosome while their effectiveness can be modulated by the sequence of the peptide, suggesting a direct interaction of the peptide with the ribosomal tunnel. Indeed, chemical footprinting in the presence of CAM-P2, one of the tested CAM-peptides, reveals protection of 23S rRNA nucleotides located deep within the tunnel, indicating a potential interaction with specific components of the ribosomal tunnel. Collectively, our findings suggest that the CAM-based peptide derivatives will be useful tools for targeting polypeptide chain mimics to the ribosomal tunnel, allowing their conformation and interaction with the ribosomal tunnel to be explored using further biochemical and structural methods.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Oligopeptídeos/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Modelos Moleculares , Oligopeptídeos/química , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Ribossomos/genética
12.
Aquat Toxicol ; 134-135: 23-33, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23537583

RESUMO

Mercury is an element naturally occurring in the biosphere, but is also released into the environment by human activities, such as mining, smelting, and industrial discharge. Mercury is a biologically harmful element and any exposure of living organisms mainly due to contamination, can cause severe or even lethal side effects. In every form detected, elemental, inorganic, or organic, mercury exhibits toxicity associated with induced oxidative stress. Although the genotoxicity of mercury has been well demonstrated in mussels, little is known about its toxic effects on the translational machinery at the molecular level. To investigate possible effects, we exposed the common mussel Mytilus galloprovincialis in seawater supplemented by 30 µg/L Hg²âº for 15 days. We observed that Hg²âº was significantly accumulated in the digestive glands of mussels, reaching a level around 80 µg/g tissue (dry weight) at the 15th day of exposure. Exposure of mussels to Hg²âº resulted in failure of redox homeostasis, as reflected on lipid peroxidation levels and superoxide dismutase activity in glands, and micronucleus frequency in gills. Extracts from digestive glands after 15-day exposure to Hg²âº exhibited decreased tRNA aminoacylation ability and, moreover, a 70% reduction in the ability of 40S ribosomal subunits to form the 48S initiation ribosomal complex. A similar reduction was detected in the ability of ribosomes to translocate peptidyl-tRNA from the A-site to the P-site, an observation coinciding with the notion that regulation of protein synthesis by Hg²âº mainly occurs at the initiation and elongation stages of translation. A-site binding, peptidyl transferase activity, and termination of peptide chain synthesis underwent less pronounced but measurable reductions, a finding which explains why poly(Phe)-synthesis in ribosomes isolated from exposed mussels is reduced by 70%. In conclusion, Hg²âº apart from being a genotoxic ion acts as a modulator of protein synthesis in mussels, an observation probably related with its ability to induce oxidative stress.


Assuntos
Biomarcadores/metabolismo , Bivalves/efeitos dos fármacos , Sistema Digestório/efeitos dos fármacos , Glândulas Exócrinas/efeitos dos fármacos , Mercúrio/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/fisiologia , Glândulas Exócrinas/química , Glândulas Exócrinas/fisiologia , Brânquias/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mercúrio/análise , Testes para Micronúcleos , Estresse Oxidativo/efeitos dos fármacos , Subunidades Ribossômicas/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
13.
Nucleic Acids Res ; 40(11): 5078-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22362747

RESUMO

Applying kinetics and footprinting analysis, we show that telithromycin, a ketolide antibiotic, binds to Escherichia coli ribosomes in a two-step process. During the first, rapidly equilibrated step, telithromycin binds to a low-affinity site (K(T) = 500 nM), in which the lactone ring is positioned at the upper portion of the peptide exit tunnel, while the alkyl-aryl side chain of the drug inserts a groove formed by nucleotides A789 and U790 of 23S rRNA. During the second step, telithromycin shifts slowly to a high-affinity site (K(T)* = 8.33 nM), in which the lactone ring remains essentially at the same position, while the side chain interacts with the base pair U2609:A752 and the extended loop of protein L22. Consistently, mutations perturbing either the base pair U2609:A752 or the L22-loop hinder shifting of telithromycin to the final position, without affecting the initial step of binding. In contrast, mutation Lys63Glu in protein L4 placed on the opposite side of the tunnel, exerts only a minor effect on telithromycin binding. Polyamines disfavor both sequential steps of binding. Our data correlate well with recent crystallographic data and rationalize the changes in the accessibility of ribosomes to telithromycin in response to ribosomal mutations and ionic changes.


Assuntos
Antibacterianos/química , Escherichia coli/genética , Cetolídeos/química , Inibidores da Síntese de Proteínas/química , Ribossomos/química , Antibacterianos/metabolismo , Sítios de Ligação , Cetolídeos/metabolismo , Ligantes , Modelos Moleculares , Inibidores da Síntese de Proteínas/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Ribossomos/metabolismo
14.
Aquat Toxicol ; 105(1-2): 157-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21718659

RESUMO

Certain metals, like Hg, Cu and Cd, are capable of down-regulating protein synthesis in several marine organisms, including Mytilus galloprovincialis. Nevertheless, due to the complexity of the environmental stress, it is difficult to evaluate the influence of individual metals on protein synthesis via field studies. To bypass this difficulty, experimental studies were carried out on M. galloprovincialis exposed in aquarium for 15 days to one of three selected metal salts, HgCl(2), CuCl(2) and CdCl(2). Polysome profile was determined in digestive gland extracts of the exposed mussels as a way of measuring the functional status of ribosomes, superoxide radical production and lipid peroxidation as indicators of oxidative stress, metallothionein content as a metal detoxification index, and superoxide dismutase activity as a free radicals-scavenging index. Exposure of mussels to Hg(2+) or Cu(2+) resulted in a concentration- and time-dependent decrease in the polysome content of digestive gland cells, which at 15th day of exposure and at the highest metal concentrations tested, was 32% and 19% of the control, respectively. Both metals, at the concentrations used (<40 µg/L), did not significantly influence the oxidative stress biomarkers. By contrast, Cd(2+) treatment significantly induced superoxide radical production and lipid peroxidation in digestive gland cells, hinting that mussels suffered from oxidative stress. Polysome levels in Cd(2+)-exposed mussels were initially decreased by day 5 in digestive gland cells and then elevated to reach nearly the control levels by 15 days of exposure. Elevated protein synthesis was associated with significantly increased production of metallothioneins, whereas such increase was not recorded in Hg(2+)- or Cu(2+)-exposed mussels. Interestingly, the ribosome efficiency at initiating protein synthesis followed a similar pattern of polysome alterations, a fact suggesting that regulation of protein synthesis mainly occurred at the initiation phase of translation. Overall, these results suggest that the effect of each metal on protein synthesis is idiosyncratic and depends on its ability to induce specific cellular defense mechanisms against oxidative stress.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Mercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Proteínas de Peixes/metabolismo , Mytilus , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
15.
Int J Antimicrob Agents ; 35(3): 235-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20045632

RESUMO

Ketolides are effective not only against macrolide-sensitive bacteria but also against some macrolide-resistant strains. Here we present data regarding a new ketolide with an alkyl-aryl side chain at C-13 of its lactone ring. It behaves as a strong inhibitor of protein synthesis in a model coupled transcription/translation system, although it does not affect the accuracy of translation. In addition, detailed kinetic analysis shows that it slowly forms a very tight, slowly reversible complex with prokaryotic ribosomes, a property that could be correlated with its superior activity compared with erythromycin against Escherichia coli both in vivo and in vitro.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Cetolídeos/química , Cetolídeos/farmacologia , Ribossomos/efeitos dos fármacos , Humanos , Cinética , Estrutura Molecular , Biossíntese de Proteínas/efeitos dos fármacos
16.
Antimicrob Agents Chemother ; 53(4): 1411-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19164155

RESUMO

Ketolides represent the latest generation of macrolide antibiotics, displaying improved activities against some erythromycin-resistant strains, while maintaining their activity against erythromycin-susceptible ones. In this study, we present a new ketolide, K-1325, that carries an alkyl-aryl side chain at C-13 of the lactone ring. According to our genetic and biochemical studies, K-1325 binds within the nascent polypeptide exit tunnel, at a site previously described as the primary attachment site of all macrolide antibiotics. Compared with telithromycin, K-1325 displays enhanced antimicrobial activity against wild-type Escherichia coli strains, as well as against strains bearing the U2609C mutation in 23S rRNA. Chemical protection experiments showed that the alkyl-aryl side chain of K-1325 interacts specifically with helix 35 of 23S rRNA, a fact leading to an increased affinity of U2609C mutant ribosomes for the drug and rationalizing the enhanced effectiveness of this new ketolide.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Cetolídeos/farmacologia , Eritromicina/metabolismo , RNA Ribossômico 23S/química , Relação Estrutura-Atividade
17.
J Mol Biol ; 385(4): 1179-92, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19071138

RESUMO

Azithromycin is a semisynthetic derivative of erythromycin that inhibits bacterial protein synthesis by binding within the peptide exit tunnel of the 50S ribosomal subunit. Nevertheless, there is still debate over what localization is primarily responsible for azithromycin binding and as to how many molecules of the drug actually bind per ribosome. In the present study, kinetic methods and footprinting analysis are coupled together to provide time-resolved details of the azithromycin binding process. It is shown that azithromycin binds to Escherichia coli ribosomes in a two-step process: The first-step involves recognition of azithromycin by the ribosomal machinery and places the drug in a low-affinity site located in the upper part of the exit tunnel. The second step corresponds to the slow formation of a final complex that is both much tighter and more potent in hindering the progression of the nascent peptide through the exit tunnel. Substitution of uracil by cytosine at nucleoside 2609 of 23S rRNA, a base implicated in the high-affinity site, facilitates the shift of azithromycin to this site. In contrast, mutation U754A hardly affects the binding process. Binding of azithromycin to both sites is hindered by high concentrations of Mg(2+) ions. Unlike Mg(2+) ions, polyamines do not significantly affect drug binding to the low-affinity site but attenuate the formation of the final complex. The low- and high-affinity sites of azithromycin binding are mutually exclusive, which means that one molecule of the drug binds per E. coli ribosome at a time. In contrast, kinetic and binding data indicate that in Deinococcus radiodurans, two molecules of azithromycin bind cooperatively to the ribosome. This finding confirms previous crystallographic results and supports the notion that species-specific structural differences may primarily account for the apparent discrepancies between the antibiotic binding modes obtained for different organisms.


Assuntos
Azitromicina/metabolismo , Escherichia coli/metabolismo , Ribossomos/metabolismo , Antibacterianos/farmacologia , Azitromicina/química , Sítios de Ligação , Deinococcus/efeitos dos fármacos , Deinococcus/metabolismo , Escherichia coli/efeitos dos fármacos , Cinética , Ligantes , Nucleosídeos/metabolismo , Puromicina/síntese química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas/química , Ribossomos/efeitos dos fármacos , Fatores de Tempo , Tilosina/química , Tilosina/farmacologia
18.
Aquat Toxicol ; 89(1): 18-27, 2008 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-18599131

RESUMO

Heavy metals are commonly associated with the generation of reactive oxygen species (ROS), which may cause oxidative damage to several cellular macromolecules and organelles. In an attempt to correlate biomarker responses to oxidative stress, caged mussels (Mytilus galloprovincialis) were exposed for 30 days in a relatively clean site and two areas (Stations 1 and 2) unevenly polluted by heavy metals in Gulf of Patras (Greece). Three periods of caging were: one in winter, the second in spring, and the third in autumn. Heavy metal content was determined in digestive glands of the exposed mussels as a measure of metal pollution, metallothionein content as an adaptive and detoxifying index, lysosomal membrane stability as a biomarker of general stress, superoxide radical production and lipid peroxidation as indicators of oxidative stress, and micronucleus frequency in gill cells as an index of chromosomal damage. Considering that protein-synthesizing machinery is one of the candidate targets for ROS, the in vivo activity of ribosomes in digestive glands was also tested. Compared with the reference samples, mussels transplanted to Station 1 showed increased levels of heavy metals and metallothionein in digestive glands, lower lysosomal membrane stability, higher values in oxidative stress indices, reduced activity of ribosomes, and increased chromosomal damage in gill cells. In addition, run-off ribosomes isolated from mussels transplanted to Station 1 were less efficient at initiating protein synthesis in a cell-free system than those from mussels in the reference site. Mussels transplanted to Station 2 exhibited similar but less pronounced responses. Statistical analysis revealed a strong positive correlation of ribosomal activity with lysosomal membrane stability, as well as a significant negative correlation with the oxidative stress indices, metallothionein content, micronucleus frequency, and the digestive gland content in Cr, Cu and Mn. Integration of all the measured biomarker responses into one general "stress index" demonstrated a clear distinction between the sampling sites, allowing classification along a pollution gradient (reference site

Assuntos
Biomarcadores/metabolismo , Mytilus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Poluentes da Água/efeitos adversos , Animais , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Grécia , Metais/efeitos adversos , Metais/química , Oceanos e Mares , Biossíntese de Proteínas , Poluição Química da Água/efeitos adversos
19.
J Biol Chem ; 283(8): 4756-65, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18079110

RESUMO

Erythromycin and tylosin are 14- and 16-membered lactone ring macrolides, respectively. The current work shows by means of kinetic and chemical footprinting analysis that both antibiotics bind to Escherichia coli ribosomes in a two-step process. The first step established rapidly, involves a low-affinity binding site placed at the entrance of the exit tunnel in the large ribosomal subunit, where macrolides bind primarily through their hydrophobic portions. Subsequently, slow conformational changes mediated by the antibiotic hydrophilic portion push the drugs deeper into the tunnel, in a high-affinity site. Compared with erythromycin, tylosin shifts to the high-affinity site more rapidly, due to the interaction of the mycinose sugar of the drug with the loop of H35 in domain II of 23 S rRNA. Consistently, mutations of nucleosides U2609 and U754 implicated in the high-affinity site reduce the shift of tylosin to this site and destabilize, respectively, the final drug-ribosome complex. The weak interaction between tylosin and the ribosome is Mg2+ independent, unlike the tight binding. In contrast, both interactions between erythromycin and the ribosome are reduced by increasing concentrations of Mg2+ ions. Polyamines attenuate erythromycin affinity for the ribosome at both sequential steps of binding. In contrast, polyamines facilitate the initial binding of tylosin, but exert a detrimental, more pronounced, effect on the drug accommodation at its final position. Our results emphasize the role of the particular interactions that side chains of tylosin and erythromycin establish with 23 S rRNA, which govern the exact binding process of each drug and its response to the ionic environment.


Assuntos
Antibacterianos/química , Eritromicina/química , Escherichia coli/química , RNA Bacteriano/química , RNA Ribossômico 23S/química , Ribossomos/química , Tilosina/química , Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Cinética , Magnésio/química , Mutação , Poliaminas/química , RNA Bacteriano/genética , RNA Ribossômico 23S/genética , Ribossomos/genética
20.
Nucleic Acids Res ; 35(15): 5108-19, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17652323

RESUMO

5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNA(Phe) at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent 'loosening' of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.


Assuntos
RNA Ribossômico 5S/química , Ribossomos/metabolismo , Azidas/química , Sequência de Bases , Escherichia coli/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Peptidil Transferases/metabolismo , Marcadores de Fotoafinidade , Poli U/metabolismo , RNA Bacteriano/química , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/enzimologia , Espermina/análogos & derivados , Espermina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...